

At a Glance Urea Cycle Disorders (UCD)

Deficient enzyme: NAGS- N-acetylglutamate synthetase

CPS1- Carbamoyl phosphate synthetase OTC- Ornithine transcarbamylase

ASS- Argininosuccinic acid synthetase (citrullinemia)

ASL- Argininosuccinic acid lyase (also referred to as ASA-argininosuccinic aciduria)

ARG1 - Arginase (argininemia)

Deficient transporter: Citrin (note: nutrition treatment is very different and not covered here)

ORT1 – Ornithine translocase (HHH Syndrome)

Toxic Metabolites: Ammonia

Argininosuccinic acid- in ASL deficiency

Arginine- in arginase deficiency

Mode of Diagnosis: clinical presentation, family history, newborn screening (for ASS, ASL, ARG1, HHH Syndrome)

Clinical presentation in untreated patients: hyperammonemia caused neurotoxicity, poor feeding, growth failure, vomiting, seizures, lethargy, liver dysfunction, coma, death; late identified adolescents/adults- chronic neurological symptoms and dietary history of self-restricting dietary protein

Treatment: prevent catabolism, limit intact protein and provide essential amino acid medical food, supplement citrulline or arginine (except in arginase deficiency), provide nitrogen scavenging medications; degree of treatment varies based on residual enzyme activity/clinical presentation

Goal Treatment Range*: Ammonia- normal (<35 µmol/L; <60 mcg/dL)

Plasma glutamine- <900 μmol/L

Plasma essential amino acids- maintain all within normal range

Plasma arginine (in ARG1)- <300 μmol/L

Plasma arginine (all other UCD)- 70 – 120 μmol/L²

Nutrient Needs by Age¹

Age	Intact Protein g/kg/d	Essential Amino Acid (medical food; g/kg/d)	Total Protein g/kg/d		
0-1 yr	0.8-1.1	0.4-1.1	1.2-2.2		
1-7 yr	0.7-0.8	0.3-0.7	1.0-1.2		
7-19 yr	0.3-1.0	0.4-0.7	0.8-1.4		
>19 yr	0.6-0.7	0.2-0.5	0.8-1.0		

Starting a Diet

- 1. Determine goals for total protein (g) and percentage to be provided by intact protein vs essential amino acids (medical food). Consider 30-50% from essential amino acids for initial diet.
- 2. Calculate amount of intact protein source (breast milk, infant formula, food) and amount of medical food required to meet total protein (g) goal.
- 3. Calculate energy (kcals) provided by intact protein and medical food sources to ensure DRI for energy needs are met. Consider addition of protein-free calorie modular as needed to meet energy needs.
- 4. Consider use of enteral nutrition support in this population as anorexia is a common complication.
- 5. Patients with severe forms of UCD may require placement of a gastrostomy tube.

Urea Cycle Disorders (UCD)

Medical Food Therapy

	Abbott abbottnutrition.com	Mead Johnson hcp.meadjohnson.com	Nutricia NutriciaMetabolics.com	Vitaflo <u>www.VitafloUSA.com</u>
Infant (0-1 yr)	Cyclinex [®] -1	WND 1		
Toddler & Young Children	Cyclinex-1 [®] Cyclinex-2	WND 1 WND 2	UCD Anamix [®] Junior Essential Amino Acid Mix	UCD trio [™] EAA supplement [™]
Older Children & Adults	Cyclinex-2	WND 2	UCD Anamix Junior Essential Amino Acid Mix	UCD trio EAA supplement
Protein Free Modular	Pro-Phree [®]	PFD Toddler PFD 2	Duocal [®] Polycal™	S.O.S [™] 25

Supplementation ¹

L-Citrulline (OTC and CPS-1 deficiency): 100-200 mg/kg/d

L-Arginine (ASS and ASL deficiency): 100-300 mg/kg/d (100 mg/kg/d may be sufficient in ASL deficiency)

Medical Therapy ¹

Nitrogen scavenging medications – use alternative pathways to remove nitrogen to prevent hyperammonemia while allowing for greater protein tolerance. Monitor branched chain amino acids.

<u>Sodium Benzoate</u>- binds with glycine to form hippurate, removes one nitrogen atom, then is excreted in urine <u>Sodium Phenylbutyrate</u>- binds with glutamine to form phenylacetylglutamine, removes two nitrogen atoms, then is excreted in urine, 450-600 mg/kg/day or 9.9-13.0 g/m2/d when >20kg, generic available

Olpruva ™ (Zevra Theraputics- zevra.com)

Pheburane ® (Medunik USA- www.medunikusa.com)

<u>Glycerol Phenylbutyrate</u>- same mechanism of action as sodium phenylbutyrate but on a glycerol backbone, 4.5-11.2 mL/m2/d

Ravicti® (Amgen- www.amgen.com)

<u>Sodium Phenylacetate + Sodium Benzoate</u> (IV only)

Ammonul® (Ucyclyd Pharma, Inc- www.ucyclyd.com)

Carglumic acid- a synthetic form of N-acetylglutamate synthase approved for NAGS deficiency, generic available (www.etonpharma.com)

Laboratory Monitoring

Plasma Amino Acids ^A (especially glutamine) Ammonia ^A Ferritin, iron, folate, zinc, vitamin B12 B CBC CBC CMP CMP B

A Weekly in infancy, 1-3 months thereafter B At least annually or as indicated

References

- 1. MacLeod, E. Nutrition Management of Urea Cycle Disorders. In LE Bernstein, F Rohr, S van Calcar (Eds.) Nutrition Management of Inherited Metabolic Diseases (2nd Edition). Springer: 2021
- 2. Häberle J, et.al. Suggested guidelines for the diagnosis and management of urea cycle disorders: First revision. J Inherit Metab Dis. 2019 Nov;42(6):1192-1230. doi: 10.1002/jimd.12100. Epub 2019 May 15. PMID: 30982989.