

At a Glance Urea Cycle Disorders (UCD)

Deficient enzyme: NAGS- N-acetylglutamate synthetase CPS- Carbamoyl phosphate synthetase OTC- Ornithine transcarbamylase ASS (Citrullinemia I)- Argininosuccinic acid synthetase ASL- Argininosuccinic acid lyase Argininemia- Arginase

Toxic Metabolites: Ammonia Argininosuccinic acid- in ASL deficiency Arginine- in arginase deficiency

Treatment: prevent catabolism, limit intact protein and provide essential amino acid medical food, supplement citrulline or arginine (except in arginase deficiency), provide nitrogen scavenging medications

Clinical presentation in untreated patients: hyperammonemia caused neurotoxicity, poor feeding, growth failure vomiting, seizures, lethargy, liver dysfunction, coma, death; late identified adolescents/adults- chronic neurological symptoms and dietary history of self-restricting dietary protein.

Goal Treatment Range*: Ammonia- normal (<35 μmol/L; <60 mcg/dL) Plasma amino acids- maintain all within normal range

*MacLeod, E. Nutrition Management of Urea Cycle Disorders. In LE Bernstein, F Rohr, S van Calcar (Eds.) Nutrition Management of Inherited Metabolic Diseases (2nd Edition). Springer: 2021

Nutrient Needs by Age [*]					
Age	Intact Protein g/kg/d	Essential Amino Acid (medical food; g/kg/d)	Total Protein g/kg/d		
0-1 yr	0.8-1.1	0.4-1.1	1.2-2.2		
1-7 yr	0.7-0.8	0.3-0.7	1.0-1.2		
7-19 yr	0.3-1.0	0.4-0.7	0.8-1.4		
>19 yr	0.6-0.7	0.2-0.5	0.8-1.0		

*MacLeod, E. Nutrition Management of Urea Cycle Disorders. In LE Bernstein, F Rohr, S van Calcar (Eds.) Nutrition Management of Inherited Metabolic Diseases (2nd Edition). Springer: 2021

Starting a Diet

- 1. Determine goals for total protein (g) and percentage to be provided by intact protein vs essential amino acids (medical food). Consider 30-50% from essential amino acids for initial diet.
- 2. Calculate amount of intact protein source (breast milk, infant formula, food) and amount of medical food required to meet total protein (g) goal.
- 3. Calculate energy (kcals) provided by intact protein and medical food sources to ensure DRI for energy needs are met. Consider addition of protein-free calorie modular as needed to meet energy needs.
- 4. Consider use of enteral nutrition support in this population as anorexia is a common complication.
- 5. Patients with severe forms of UCD may require placement of a gastrostomy tube.

Urea Cycle Disorders (UCD)

Medical Food Therapy					
	Abbott abbottnutrition.com	Mead Johnson hcp.meadjohnson.com	Nutricia NutriciaMetabolics.com	Vitaflo www.VitafloUSA.com	
Infant (0-1 yr)	Cyclinex-1 [®]	WND 1			
Toddler & Young Children	Cyclinex-1 [®] Cyclinex-2 [®]	WND 1 WND 2	UCD Anamix [®] Junior Essential Amino Acid Mix	UCD trio [™] EAA supplement [™]	
Older Children & Adults	Cyclinex-2 [®]	WND 2	UCD Anamix [®] Junior Essential Amino Acid Mix	UCD trio [™] EAA supplement [™]	
Protein Free Modular	Pro-Phree [®]	PFD Toddler PFD 2	Duocal [®] Polycal™	S.O.S [™] 20, 25	

Supplementation*

L-Arginine (ASS and ASL deficiency): 100-300 mg/kg/d (100 mg/kg/d may be sufficient in ASL) L-Citrulline (OTC and CPS deficiency): 100-200 mg/kg/d

*MacLeod, E. Nutrition Management of Urea Cycle Disorders. In LE Bernstein, F Rohr, S van Calcar (Eds.) Nutrition Management of Inherited Metabolic Diseases (2nd Edition). Springer: 2021

Medical Therapy*

Nitrogen scavenging medications – use alternative pathways to remove nitrogen to prevent hyperammonemia while allowing for greater protein tolerance. Monitor branched chain amino acids.

<u>Sodium Benzoate</u>- binds with glycine to form hippurate, removes one nitrogen atom, then is excreted in urine <u>Sodium Phenylacetate</u>- binds with glutamine to form phenylacetylglutamine, removes two nitrogen atoms, then is excreted in urine

Buphenyl ® (Horizon Pharma- <u>www.horizonpharma.com</u>)

Glycerol Phenylacetate- same mechanism of action as sodium phenylacetate

Ravicti[®] (Horizon Pharma- <u>www.horizonpharma.com</u>)

<u>Sodium Phenylacetate + Sodium Benzoate</u> (IV only)

Ammonul[®] (Ucyclyd Pharma, Inc- <u>www.ucyclyd.com</u>)

Carglumic acid- a synthetic form of N-acetylglutamate synthase used for NAGS deficiency CARBAGLU® (www.recordati.com)

*MacLeod, E. Nutrition Management of Urea Cycle Disorders. In LE Bernstein, F Rohr, S van Calcar (Eds.) Nutrition Management of Inherited Metabolic Diseases (2nd Edition). Springer: 2021

Laboratory Monitoring

Plasma Amino Acids¹ (especially glutamine) Ammonia¹ Prealbumin² 25-OH Vitamin D² CBC² Ferritin, iron, folate, zinc²

 $^{\rm 1}\,{\rm Weekly}$ in infancy, monthly the reafter

² At least annually

*MacLeod, E. Nutrition Management of Urea Cycle Disorders. In LE Bernstein, F Rohr, S van Calcar (Eds.) Nutrition Management of Inherited Metabolic Diseases (2nd Edition). Springer: 2021

Copyright Met Ed Co. 2019; Revised 2021; Support provided by Abbott Nutrition, Cambrooke Therapeutics, Mead Johnson Nutrition, Nutricia NA, and Vitaflo USA